Самосветящиеся небесные тела, состоящие из раскаленных газов, по своей природе сходные с Солнцем - pismo.netnado.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Самосветящиеся небесные тела, состоящие из раскаленных газов, по своей природе сходные - страница №1/1


Звезды

Глава 4. Звезды
4.1. Классификация звезд
Звезды – самосветящиеся небесные тела, состоящие из раскаленных газов, по своей природе сходные с Солнцем. Основными параметрами звезд являются их масса, радиус и светимость (полное количество излучаемой энергии), выражаемые обычно в долях массы, радиуса и светимости Солнца, а также эффективная температура, спектральный класс, звездная величина, которую имела бы звезда на стандартном расстоянии 10 парсек, и показатель цвета (разность звездных величин, определенных в двух разных спектральных областях).

Звездный мир чрезвычайно многообразен [1–3]. Некоторые звезды в миллионы раз по объему больше и ярче Солнца (звезды-гиганты), их средняя плотность в сотни тысяч раз меньше плотности воды; в то же время имеется множество звезд, которые по размерам и количеству излучаемой ими энергии значительно уступают Солнцу (звезды-карлики), их средняя плотность в сотни тысяч раз больше плотности воды.

Звезды состоят из тех же химических элементов, что и все тела на Земле. В них преобладают водород (70%) и гелий (25%), а также кислород, азот, железо, углерод, неон. Остальных элементов мало.

Существуют молодые звезды – ярко светящиеся объекты с голубым свечением, спектр излучения которых сдвинут в фиолетовую сторону, и существуют старые звезды с красным свечением, спектр которых сдвинут по сравнению с молодыми звездами в сторону более длинных волн. Между этими крайними типами звезд существуют промежуточные типы – желтые звезды, т.е. звезды среднего возраста, к таким звездам принадлежит наше Солнце – типовая желтая звезда.

У некоторых типов звезд блеск периодически меняется, это переменные звезды. Грандиозные изменения, сопровождаемые внезапными увеличениями блеска, происходят в новых звездах. Еще большие изменения происходят во время вспышек сверхновых звезд.

Переменные звезды делятся на два больших класса –затменные переменные звезды и физические переменные звезды [5]. Физические переменные звезды делятся на пульсирующие и эруптивные переменные звезды.



Затменные переменные звезды, по современным представлениям, представляют собой систему из двух звезд, вращающихся вокруг общего центра масс, причем плоскость их орбит столь близка к лучу зрения земного наблюдателя, что при каждом обороте наблюдается затмение одной звезды другой, сопровождаемое ослаблением суммарного блеска системы. Расстояние между компонентами обычно сравнимо с их размерами. В нашей Галактике обнаружено свыше 4000 звезд этого класса.

Периоды изменения блеска затменных звезд очень разнообразны: у одних они меньше суток, у других сотни дней, у третьих, в состав которых вход сверхгиганты, – несколько десятков лет.

К затменным звездам относятся и пульсары, у которых период изменения яркости составляет немногие секунды, что, по мнению исследователей, свидетельствует о быстром вращении излучающего в рентгеновском диапазоне белого карлика (или нейтронной звезды), входящего в двойную систему.

У некоторых двойных звезд имеется так называемый невидимый компонент, масса которых превышает 3 массы Солнца, и которые рассматриваются как «черные дыры».

Изменение и стабильность периода блеска здесь объясняется затмениями в системах двойных звезд одной звезды, более яркой, другой, менее яркой.

Пульсирующие переменные звезды характеризуются плавными и непрерывными изменениями блеска, это объясняется пульсацией внешних слоев звезд: при сжатии звезды радиус ее уменьшается, она нагревается и светимость ее увеличивается, при расширении звезды ее светимость падает.

Периоды изменения блеска пульсирующих переменных звезд колеблется от долей дня (звезды типа RR Лиры, δ Щита и β Большого Пса) до десятков (цефеиды, звезда типа RV Тельца) и сотен дней (звезды типа Миры Кита, полуправильные звезды). Периодичность изменения блеска некоторых звезд выдерживается с точностью хорошего часового механизма, у других она практически отсутствует. Всего пульсирующих звезд известно около 14000.

У этого класса звезд объяснений изменения блеска и величины и стабильности периодов изменения блеска практически нет.

Современная астрофизика делит пульсирующие переменные звезды на семь подклассов:

долгопериодические цефеиды – переменные звезды-свергиганты с периодами от 1 до 50-200 суток;

звезды типа Миры Кита – долгопериодические переменные звезды-гиганты с амплитудами более 2,5 звездной величины с хорошо выраженной периодичностью, с периодами, заключенными в пределах от 80 до 1000 суток;

полуправильные переменные звезды – звезды поздних классов, субгиганты, гиганты или сверхгиганты, с различными неправильностями в изменении блеска с периодами от 20 до 1000 суток и больше;

переменные звезды типа RR Лиры – короткопериодические цефеиды или звезды в шаровых скоплениях – пульсирующие гиганты со спектральными классами А и F, с периодами изменения блеска от 0,05 до 1,2 суток и амплитудами до 1-2 звездных величин.

переменные звезды типа δ Щита – субгиганты спектральных классов А и F с периодом в немногие часы и амплитудой в несколько сотых или десятых долей звездной величины;

переменные звезды типа RV Тельца – звезды-сверхгиганты со сравнительно стойкой периодичностью изменении блеска с общей амплитудой до 3 звездных величин, кривая блеска состоит из двойных волн с чередующимися главными и вторичными минимумами с периодом от 30 до 150 суток, спектральные классы от G до поздних К;

переменные звезды типа β Цефея или звезды типа β Большого Пса – однородная группа пульсирующих звезд-гигантов, блеск которых меняется в пределах около 0,1 звездной величины, периоды заключены от 0,1 до 0,6 суток, спектральные классы В0-В3.

Эруптивные переменные звезды характеризуются неправильными, часто быстрыми и большими изменениями блеска, вызванные процессами, носящими взрывной (эруптивный) характер. Эти звезды делятся на две группы – молодые, недавно сформировавшиеся звезды и звезды почти постоянные, но временами показывающие быстрые и большие увеличения яркости, это новые и сверхновые звезды, повторные новые, а также некоторые другие. Во многих случаях звезды этой группы оказываются двойными системами. Эруптивных звезд известно более 1600.

В отдельную группу здесь могут быть выделены звезды, переменность блеска которых обусловлена неоднородной поверхностной яркостью, вследствие чего при вращении блеск их изменяется.

Также в отдельную группу могут быть выделены сверхновые звезды, в других галактиках их открывают ежегодно до 20. Вспышка сверхновой – наиболее грандиозное явление в мире звезд: ее блеск затмевает блеск всех звезд галактики. Вспышки сверхновых звезд связывают с началом коллапса звезды после истощения источников ядерной энергии. Считается, что после вспышки сверхновая звезда превращается в пульсар – нейтронную звезду, вращающуюся с периодом в немногие секунды и доли секунды, а узконаправленное электромагнитное излучение, выходящее из магнитных полюсов пульсара, не совпадающих с полюсами оси вращения, обусловливает наблюдаемое импульсное излучение пульсара.

4.2. Современные представления о происхождении и развитии звезд
Проблема происхождения и развития звезд в галактиках является фундаментальной проблемой. В настоящее время разработано несколько теорий, объясняющих происхождение и характер поведения звезд. Многие процессы звездной эволюции объяснены ими вполне удовлетворительно, тем не менее, некоторые вопросы, связанные с происхождением звезд, распределением их в галактиках, а также их эволюцией остаются открытыми. Существуют две главные, но противоположные точки зрения на формирование звезд [4].

Согласно первой из них звезды образуются из газовой материи, в значительном количестве рассеянной в Галактике и наблюдаемой оптическими и радиоастрономическими методами. Газовое вещество там, где его масса и плотность достигают достаточно большой величины, сжимается и уплотняется под действием собственного притяжения, образуя холодный шар. В процессе дальнейшего сжатия температура внутри него, однако, повышается до нескольких миллионов градусов; этого достаточно, чтобы для возникновения термоядерных реакций, которые вместе с процессами излучения и обусловливают дальнейшую эволюцию этого шара – звезды.

Согласно второй точке зрения звезды образуются из некоторого сверхплотного вещества. Сверхплотное вещество такого рода еще не обнаружено, и его свойства неизвестны, но то обстоятельство, что в наблюдаемой Вселенной процессы истечения масс из звезд, деления и распада систем наблюдаются во многих случаях, процессы же образования звезд из межзвездного вещества не наблюдаются, говорит в пользу второй точки зрения (?! – В.А.). Последнее утверждение непонятно, поскольку могут быть выдвинуты и другие точки зрения.

Предполагается, что Галактика в целом развилась в процессе конденсации первичного газового облака, богатого водородом. Откуда взялось само это облако, астрофизикой не рассматривается. Образовавшиеся при этом звезды в нашу эпоху наблюдаются как звезды сферической части Галактики, бедные металлами и имеющие наибольший возраст. Первичное газовое облако, продолжая сжиматься под действием гравитационных сил, обогащалось металлами за счет выбрасывания вещества из недр ранее образовавшихся звезд. Поэтому звезды, образовавшиеся позднее из этого обогащенного металлами газового облака, оказались более богатыми металлами. Однако самими астрофизиками подобное представление о развитии Галактики представляется искусственным и имеющим многие противоречия. В свое время предполагалось, что решение найдется, если будет учтена роль взрывных отталкивающих сил, таящихся в недрах галактик, природа которых сама по себе, правда, тоже остается неизвестной…

Таким образом, можно констатировать, что ни происхождение, ни развитие звезд пока что не получили удовлетворительного объяснения.

То же можно сказать и об объяснениях механизмов поведения переменных звезд и о пульсарах.

Как известно, пульсары – это слабые источники пульсирующего радиоизлучения, всплески которого следуют друг за другом с очень медленно изменяющимся периодом. По типу радиоизлучения пульсары отличаются от всех известных других источников радиоизлучения, характеризующихся либо постоянной интенсивностью (галактики и радиогалактики), либо регулярными всплесками радиоизлучения.

Проведенные исследования показали, что максимум излучения пульсаров приходится на метровые волны, однако в одном импульсе имеется разброс частот: сначала излучаются более короткие, а затем более длинные волны. В принципе это можно объяснить особенностями прохождения волн в межзвездном пространстве. Периоды импульсов излучения составляют от 0,033с до 3,75с. Периоды медленно возрастают, время, в течение которого период увеличивается вдвое, составляет миллионы и десятки миллионов лет. Современная космогония объясняет пульсары теорией «вращающегося маяка», в соответствии с которой пульсары представляют собой быстровращающуюся нейтронную звезду, имеющую узкий луч излучения, однако такое объяснение искусственно, потому что никак не объясняет причин возникновения такого узкого луча.

Не ставя под сомнение факты, накопленные астрономами за несколько столетий, и, особенно, в 20 веке, когда появились мощные и высокоточные астрономические средства, приходится выразить скептическое отношение к некоторым объяснениям происхождения и эволюции звезд, тем более, к объяснению причин переменности яркости звезд.

В самом деле, если принять концепцию происхождения звезд путем конденсации космической пыли, то возникает естественный вопрос, откуда взялась сама эта пыль, да еще в количествах, обеспечивших создание такой звездной массы?

Почему молодые и старые звезды распределены в галактиках неравномерно, у ядра явно больше молодых звезд, а поверхности шаровых скоплений звезд в галактиках состоят только из старых звезд?

В чем заключается физический механизм переменности блеска звезд, только ли в затмениях одних звезд другими, как это происходит в системах двойных звезд, или возможны иные механизмы и какие именно?

Таких вопросов множество, и на них нет даже попыток ответить в рамках существующих представлений об устройстве Вселенной.

А, кроме того, нужно не забывать, что любой факт может иметь бесчисленное множество трактовок, существующие сегодня в науке гипотезы о возникновении звезд, об их энергетике, а также о процессах, происходящих в них, не должны считаться единственно возможными, так же как и предлагаемые ниже эфиродинамические модели процессов, происходящих в этих звездах.



4.3. Эфиродинамическая концепция происхождения и развития звезд
В соответствии с эфиродинамическими представлениями протонно-водородный газ образуется в результате соударения на больших скоростях (тысячи километров в секунду) эфирных струй. Эти соударения могут иметь причиной, например, соударение комет, в телах которых эфирные струи движутся со сверхсветовыми скоростями, или соударение потоков эфира, поступающих по спиральным рукавам галактик от периферии в ядро. Протоны образуются в результате вихреобразования потоков эфира, их самопроизвольного уплотнения и многократного деления.

Протоны сами формируют из окружающего эфира присоединенные вихри – электронные оболочки, в результате чего образуется атомарный водород. Протонно-водородный газ вследствие гравитации, являющейся следствием термодиффузионных процессов в эфире, начинает собираться в более плотные облака, из которых и формируются звезды.

В результате понижения в протонах температуры относительно температуры окружающего эфира возникает гравитационное (термодиффузионное) взаимодействие протонов друг с другом, и протонно-водородный газ начинает собираться в уплотнения, при этом возникает гравитационная неустойчивость: чем больше собирается газа вместе, тем сильнее протоны притягивают к себе газ из окружающего пространства. Образуются звезды, тела которых продолжают сжиматься.

В процессе сжатия возникает так называемая гравитационная неустойчивость: по мере сжатия силы гравитации, воздействующие на внешние слои газа звезды растут, и процесс идет с ускорением. Но одновременно возрастающее из-за уплотнения давление противодействует сжатию, в результате чего наступает некоторое равновесие и сжатие прекращается. Однако температура газа оказывается повышенной до величины, достаточной для того, чтобы начались термоядерные реакции. Высокая температура, достигшая миллионов градусов, обеспечивает высокие скорости протонов, достаточные для того, чтобы преодолеть силу электрического отталкивания и обеспечить слияние протонов в дейтроны с одновременным превращением одного из протонов в нейтрон, а затем дейтронов в альфа-частицы. Выделяемая при этом энергия в виде выхлопа эфира из межнуклонного промежутка, еще более увеличивает температуру газа, образовавшего звезду, и процесс ускоряется, пока не наступит некоторое динамическое равновесие, поскольку все это сопровождается электромагнитным излучением

Такова первая стадия процесса образования звезды, впрочем, мало отличающаяся от уже известной версии образования звезды из протонно-водородного газа, ее гравитационного сжатия и разогрева, обеспечивающего ядерные реакции.

На второй стадии начинается слияние альфа-частиц и дейтронов в более сложные ядра, главным образом те, которые состоят из целого числа альфа-частиц и дейтронов: это, углерод (3 альфа частицы), азот (три альфа-частицы и дейтрон), кислород (4 альфа-частицы), неон (5 альфа-частиц) и железо (14 альфа-частиц).

Следует отметить, что энергия связи альфа-частиц между собой существенно меньше, чем энергия связи нуклонов в альфа-частицах, где она составляет порядка 7,1 МэВ на нуклон. В углероде эта энергия связи составляет 0,6 МэВ на нуклон, в кислороде – 0,9 МэВ на нуклон, в неоне – 0,96 МэВ на нуклон, в железе – 1,7 МэВ на нуклон. Поэтому для образования новых, более тяжелых элементов такой высокой температуры уже не нужно. Мало того, высокие температуры не позволяют устойчиво сохраняться сложным ядрам и, если они все же образовались, они тут же будут разрушены. Поэтому образование сложных ядер происходит на более поздней стадии существования звезды, когда она уже несколько остыла.

Третья стадия развития звезды начинается тогда, когда нуклоны заметно утратят свою внутреннюю энергию. Процесс потери энергии протонами, длящийся миллиарды лет, приводит и к уменьшению скорости потоков эфира, их образующих, но так же приводит и к уменьшению скорости потоков эфира в межнуклонном пространстве, в том числе и между альфа-частицами, образующими сложные ядра и, соответственно, энергии связей нуклонов. Это в первую очередь касается внешних слоев звезды, в окружении которых эфир имеет большую вязкость, чем эфир в межнуклонном пространстве внутри звезды, где температура самого эфира ниже. Поэтому потеря энергии нуклонами во внешних слоях звезды больше, чем во внутренних, и эти нуклоны теряют устойчивость быстрее.

Здесь возможны три варианта развития событий.

Первый вариант предусматривает постепенное разложение нуклонов и их постепенное растворение в эфире. Это, вероятно, и происходит в шаровых скоплениях старых звезд в галактиках. Этот процесс протекает спокойно, без каких бы то ни было взрывов.

Второй вариант связан с тем, что устойчивость потеряли нуклоны одновременно в достаточно большой области. К этому времени протоны увеличили свой размер значительно, следовательно, и их внутренне отверстие также увеличилось. Теперь состояние протона, как атома, стало неустойчивым, и при малейшем толчке внешние потоки эфира, образовывавшие электронную оболочку, теперь замыкаются через это отверстие. Атом переходит в состояние собственно протона. Процесс нарастает лавинно, и в короткое время оказывается, что большая внешняя часть звезды состоит сплошь из протонов, которые все имеют одинаковый положительный электрический заряд. Электрическое отталкивание протонов друг от друга приводит к взрыву с выбросом всего этого ионизированного вещества. Однако этот взрыв не затрагивает всей звезды, поскольку внутренние слои еще не потеряли устойчивость. Но через некоторое время устойчивость потеряет следующий слой, и взрыв повторится. Это будет происходить до тех пор, пока не иссякнет материал звезды, или когда оставшегося материала окажется недостаточным для обеспечения очередного взрыва. Тогда произойдет спокойное растворение вещества звезды в эфире.

Третий вариант возможен тогда, когда устойчивость атомов сохранятся более длительное время, и успевает накопиться достаточно большое количество атомов, находящихся на грани устойчивости. Тогда происходит масштабный взрыв. Вероятно, это и есть взрыв сверхновой звезды.

Реализация того или иного варианта зависит как от начальных условий образования звезды, например, от ее массы, так и от того, в какую область Галактики она попадет после ее образования. Если она попадает в сферическую часть, то там встречных потоков эфира для нее нет, устойчивость протонов здесь будет ниже, чем в спиральных рукавах, где такие потоки есть. Это значит, во-первых, что путь звезды здесь будет короче, но, вероятнее всего, здесь и рассасывание протонов произойдет спокойнее. Если же звезда попадет в спиральный рукав, то устойчивость протонов благодаря повышенным градиентам скоростей потоков эфира (эфирному ветру) будет выше, путь длиннее, вероятно, и время, в течение которого может накапливаться критическая масса неустойчивых протонов будет больше, но зато и потеря их устойчивости произойдет бурно.

Протоны, образовавшие звезды, имеют максимальную плотность и минимальные размеры, скорости потоков эфира в телах протонов велики, устойчивость протонов максимальная. Потоки эфира в присоединенных вихрях – электронных оболочках также имеют относительно высокие скорости, а размеры этих оболочек также относительно невелики. Поэтому частоты, излучаемые такими молодыми атомами, сдвинуты в область коротких волн, и молодые звезды, образованные недавно созданным протонно-водородным газом, имеют голубой цвет и спектр, сдвинутый в фиолетовую область.

По мере старения звезд размер протонов увеличивается как за счет потери энергии из-за вязкого трения об окружающий эфир, так и за счет поглощения ими эфира окружающего пространства. При сохранении момента количества движения скорость потоков эфира в теле протона уменьшается, устойчивость протона снижается. Увеличивается размер и присоединенного вихря – электронной оболочки атома, а его упругость уменьшается. Теперь тот же атом будет излучать энергию на пониженных частотах, спектр излучения сдвинется в красную сторону. Звезды пожелтеют, а в дальнейшем и покраснеют, это будет уже накануне их гибели. Протоны начнут разваливаться и растворяться в эфире. По-видимому, в спиральных галактиках это происходит на их периферии: в спиральных рукавах на краях диска, а в сфере, окружающей центральную область, в поверхностных слоях.

Прежде всего, имеет смысл обратить внимание на то обстоятельство, что период изменения яркости увеличивается с увеличением размеров звезд. Как это ни удивительно, астрофизики не привлекают для объяснения периодических изменений яркости такие простые механические понятия, как колебания и волны.

Между тем, звезда является упругим телом, поскольку силы гравитации всегда восстанавливают любые отклонения от шаровой поверхности звезд и, следовательно, однажды возникшие упругие колебания будут продолжаться долго и со стабильным периодом. Звезда, как и всякий упругий шар, будет по одной оси, например, по оси вращения сжиматься, расширяясь по экватору, а затем расширяться по оси вращения, сжимаясь по экватору. Такие сферические колебания будут сопровождаться волнами механических напряжений, изменяя напряженность электронных оболочек атомов, что и будет вызывать соответствующие изменения в интенсивности излучения, т.е. блеска.

Могут быть колебания и другого рода – это глубинные и поверхностные волны, которые могут распространяться с относительно стабильной скоростью и вызывать периодические изменения напряжений в веществе и соответственно в изменении блеска.

Разумеется, могут быть и двойные системы звезд, но вряд ли все отнесенные сегодня к ним переменные звезды реально являются таковыми.

Это же относится и к пульсарам. Здесь явно имеет место модуляция основной частоты излучения второй частотой, которая может иметь волновую причину. Предположение о вращении звезды с частотой, обеспечивающей периоды в десятые доли секунды, представляется весьма искусственным, а предположение о прохождении волн по поверхности звезды либо неподвижной, либо вращающейся с малой скоростью, вполне логично. Изменение напряженности в поверхностном веществе звезды при этом вполне может являться причиной для изменения интенсивности излучения.

В соответствии с этими представлениями могут быть рассмотрены и механизм распада сверхновых звезд, и механизм пульсаров. Здесь также могут быть высказаны некоторые предположения.

По мере потери энергии протонами их размер увеличивается, соответственно в протонах увеличивается и их центральное отверстие. Положение эфирных потоков, образующих присоединенные вихри – электронные оболочки, оказывается неустойчивым, и если ранее эфирные потоки замыкались во внешнем относительно протона пространстве, то теперь они стремятся замкнуться через центральное отверстие протона. Этот процесс способен нарастать лавинообразно по всей основной массе звезды, и в короткое время вся масса звезды превращается в сжатый протонный газ, который взрывается, поскольку все протоны испытывают взаимное электрическое отталкивание. Не исключено, что в этот процесс вовлекаются и ядерные реакции синтеза протонов в дейтерий, тритий, гелий-3 и альфа-частицы с выделением дополнительной ядерной энергии.

Что касается пульсаров, то представление их как быстровращающихся звезд весьма искусственно. Более очевидной является модель действительно пульсирующей звезды, в которой распространяются продольные волны сжатия тела звезды и поперечные волны, проходящие по ее поверхности. Тогда становится понятным отношение периодов излучения, порождаемых волнами сжатия с выбросом электромагнитной энергии и модуляции излучения, – ими являются поперечные волны. Само же тело звезды вовсе не обязательно должно вращаться с частотой пульсаций, а излучение вовсе не должно быть узконаправленным, поскольку гребней волн на поверхности может быть много.

В рассмотренной картине внегалактической астрономии не нашли места пульсары – пульсирующие звезды и сверхновые звезды, однако по физической основе этих звезд также могут быть высказаны некоторые предположения, основанные на эфиродинамическом подходе. Это тем более правомерно, поскольку никакой физической основы современная космогония в отношении этих образований не предлагает, ограничиваясь лишь феноменологией.

Однако эфиродинамический подход позволяет предложить и иную модель. Не возражая против высокой плотности вещества в пульсарах, представим пульсар как большой уплотненный эфирный тороид, по поверхности которого распространяются волны, причем сам тороид удерживает эфир благодаря тороидальному движению эфира и наличию на его поверхности пограничного слоя и имеет не только тороидальное, но и кольцевое вращение по типу протона.

Прохождение волн по поверхности создает изменение механических напряжений в поверхностных слоях, благодаря чему и возникает излучение. Отношение частот периода импульсов к частоте радиоизлучения хорошо согласуется с представлениями о скорости распространения поперечных волн, проходящих по поверхности тела с продольными волнами, проходящими в самом теле. Изложенная модель может оказаться более правдоподобной, нежели модель «вращающегося маяка, происхождение и функционирование которого пока не имеет объяснения.

Что касается так называемых сверхновых звезд, то и здесь положение с их объяснением аналогично. Сверхновыми звездами являются звезды, испытавшие катастрофический взрыв, за которым последовало огромное увеличение их блеска. В максимуме блеска светимость сверхновых звезд превышает светимость таких звезд, как Солнце, в миллиарды раз, превосходя иногда светимость всей галактики, в которой они находятся. Максимум блеска наступает примерно через 2–3 недели после взрыва, после чего ее блеск снижается и в течение 100 суток уменьшается в 25–50 раз. В среднем в галактике, подобной нашей, вспыхивают одна-две сверхновые звезды в столетие. Астрономы открывают полтора-два десятка сверхновых звезд ежегодно.

По характеру изменения блеска со временем и спектру сверхновые звезды разделяют на два типа. Сверхзвезды I типа , как правило, в 3–5 раз ярче сверхновых II типа и характеризуются более медленным уменьшением блеска после максимума. Для спектров сверхзвезд II типа наиболее характерны интенсивные линии излучения, тогда как для сверхзвезд I типа – очень широкие линии поглощения. Другим отличием является присутствие в спектре сверхновых звезд II типа сильных линий водорода, почти полностью отсутствующих в спектрах сверхзвезд I типа.

Продуктами взрыва сверхновых звезд являются расширяющиеся с большой скоростью (до 20 тыс. км/с) газовые оболочки и пульсары. Остатки сверхновых звезд являются источниками радиоизлучения или теплового рентгеновского излучения.

Эфиродинамическая модель механизма взрыва сверхновой звезды основывается на представлении об утрате энергии протонами с течением времени.

По мере того как протоны теряют свою энергию, их размеры увеличиваются, соответственно увеличивается и центральное отверстие. С определенного момента достаточно любого толчка, чтобы эфирные потоки, замыкавшиеся во внешнее пространство и до этого времени образовывавшие первый присоединенный вихрь – электронную оболочку, изменили свое направление и стали замыкаться через это отверстие. Атом становится ионизированным.

Процесс ионизации проходит лавинно, так как в неустойчивом состоянии находится множество атомов, в первую очередь в поверхностных слоях звезды, поскольку в этих слоях температуры ниже, чем во внутренних, следовательно, скорости перемещения атомов меньше и градиенты скоростей эфира на их поверхностях меньше, а значит, вязкость эфира выше. Процесс ионизации распространяется по поверхности и в глубину со скоростью звука и в течение нескольких часов способен охватить все области звезды, в которых протоны находятся в неустойчивом состоянии. Очень быстро большие области уплотненного газа оказываются ионизированными, все протоны отталкиваются друг от друга, происходит взрыв.

Представляет интерес оценить ускорение, которое получает протон на поверхности звезды в результате такой ионизации.

Если представить параметры звезды аналогично солнечным, т.е. Мзв = 2·1030 кг и Rзв = 7·108 м, то число протонов в звезде составит


Мзв 2·1030

Np = —— = ————— = 1,2·1057 шт. (11.3)

mp 1,67·10–27
Если предположить, что ионизируется все тело звезды, то ее заряд составит

Qзв = Np· e = 1,2·1057·1,6·10–19 = 2·1038 Кл. (11.4)
Кулоновская сила отталкивания, действующая на протон на поверхности звезды составит:
Qзве 2·1038· 1,6·10–19

F = ———— = ———————— = 6· 1011 Н (11.5)

4πεoR2 4π·8,85·10–12 ·72·1016


и, следовательно, ускорение, которое получит протон, удаляющийся от звезды, будет равно
F 6· 1011

а = —— = ————— = 3,6· 1038 м·с–2 . (11.6)

mp 1,67· 10–27
Это ускорение будет больше ускорения силы тяжести на поверхности Солнца в 1,3· 1036 раз!

Реальное ускорение протонов будет все же во много раз меньше потому, что, во-первых, не все тело звезды одновременно ионизируется, этот процесс растекается во времени, за которое верхние слои плазмы отойдут от звезды, а во-вторых, вообще не все тело звезды включается в процесс, остается некоторый остаток от звезды. Тем не менее, видно, что процесс обвальной ионизации способен обеспечить энергию взрыва сверхновой звезды. По мере удаления от центра взрыва ускорение протона будет снижаться не менее чем в пятой степени расстояния, так как вся масса распыляется в пространстве. Это значит, что при удалении на десятикратную величину радиуса ускорение уменьшится в 105 раз, а при удалении на сто радиусов – в 1010 раз. А уже после удаления на 10 миллионов радиусов ускорения вообще больше никакого не будет, разлет газа будет продолжаться по инерции. На самом деле этот предел наступит раньше, что соответствует наблюдениям.

При обращении атомов водорода в протоны сила отталкивания между протонами окажется равной
q2 (1,6·10) 2

F = ——— = ———————— = 2,3·10–8 H. (11.7)

εоr2 4π·8,85·10–12 ·10–20


и протоны получат ускорение, равное

F 2,3·10–8


а = —— = —————— = 6,85·1018 м·с–2 . (11.8)

2mp 2·1,675·10–27


Полная же скорость протона может составить
v =  adt =  adr(дt/дr) (11.9)
или
∞ ∞

v2 =  adt =  adr (11.10)

rо rо
Подставляя соответствующие числа, получаем, что скорость, достигнутая двумя протонами в результате только их взаимодействия, составляет 26 км/с. Однако поскольку взрывается все тело звезды, то скорость внешних слоев возрастет многократно.

Что касается звезд-карликов, нейтронных звезд и т.п., то следует указать на еще одну возможность их объяснения на основе эфиродинамических представлений. Принципиально, в космосе возможно образование крупных эфиродинамических тороидов, причем участие в их структуре и обычных нейтронов не исключается. Их внешние параметры мало, чем будут отличаться от параметров нейтронных звезд. Волны, проходящие по их поверхностям и в глубине, будут стимулировать излучение во внешнюю среду. В этой модели получает объяснение высокая скорость вращения звезды, поскольку ее вращение возникает вследствие такого же преобразования тороидальной скорости в кольцевую, как это происходит в теле протона. Фактически пульсары могут оказаться одной из разновидностей таких тороидов.

Все это, конечно, гипотезы, но гипотезы, позволяющие посмотреть на происходящие космологические процессы с динамической, т.е. физической позиции.

Было бы правильно, если бы астрофизики при анализе причин периодического изменения блеска переменных звезд учли и указанную выше возможность.

Таким образом, эфиродинамический подход может несколько дополнить представления о возникновении, эволюции и гибели звезд.
4.4. Энергетика звезд
Энергетика звезд, в принципе, обеспечивается термоядерной реакцией синтеза водорода в гелий. Однако следует учесть и тот факт, что все небесные тела непрерывно поглощают эфир окружающего пространства, и поскольку тепловая энергия его выше тепловой энергии эфира в протонах, то идет непрерывная подпитка протонов этой внешней энергией. Это означает, что суммарная энергия излучения звезды за все время ее существования может быть существенно большей, чем величина энергии термоядерного синтеза, рассчитанная исходя из текущего состояния звезды. Совершенно упущенным из рассмотрения оказался вопрос о внутренней энергии самих нуклонов. На самом деле, основную внутреннюю энергию звезд составляют именно нуклоны, поскольку они существенно уплотнены и поскольку энергия движения струй эфира в телах нуклонов, скорость которых многократно превышает скорость света, непрерывно подпитывает энергию струй эфира в межнуклонном пространст-ве. Это значит, что и время существования звезды может оказаться большим, чем рассчитанным из затрат энергии на излучение.

Представляет интерес оценить энергетические возможности звезд.

После того как протоны образовались в ядре галактики, между ними возникает гравитационное взаимодействие, и они начинают собираться в звезды. Взаимодействие протонов в звездах приводит к их слипанию, образованию из протонов нейтронов и далее альфа-частиц. При образовании каждой альфа-частицы выделяется энергия 28,3 МэВ, которая реализуется в виде схлопывания нуклонов и выброса эфирного потока из межнуклонного пространства.

Схлопывание нуклонов приводит к появлению волн на их поверхности и, как следствие, к высокочастотному электромагнитному излучению. Выброс эфирных струй приводит к ускорению протонов, попавших под них, отсюда высокая температура молодых звезд, а также к образованию турбулентностей и самому разнообразному электромагнитному излучению.

Дальнейшие энергетические процессы проходят, по-видимому, как под воздействием соединения нуклонов в альфа-частицы, так и в связи с энергетикой самих протонов – движения эфирных потоков в теле нуклонов.

Принципиально энергетики слияния протонов в альфа-частицы достаточно для объяснения энергии излучения звезд. Проследим это на примере Солнца [6].



Как известно, энергия связи альфа-частицы равна 28,3 МэВ, или 4·10–12 Дж, что составляет на каждый нуклон 10–12 Дж. При массе Солнца 1,99·1030 кг в нем содержится 1,2·1057 нуклонов, и, если бы все они обратились в альфа-частицы, энергия их связей составила бы 1,2·1045 Дж, а мощность общего излучения Солнца составила бы 3,83·1026 Вт. Следовательно, вся энергия Солнца путем превращения водорода в гелий израсходуется на излучение за 100 млрд. лет. Если же учесть экспоненциальное падение интенсивности излучения со временем, то 100 млрд. лет будет не срок излучения, а постоянная времени, общий же срок будет в несколько раз больше. За это время Солнце потеряет на излучение 6·10–12 доли своей массы. Таким образом, в принципе, процесс слияния нуклонов в альфа-частицу объясняет природу энергетики излучения звезд.

Однако следует отметить, что на самом деле потенциальные возможности энергетики звезд значительно больше. В рассмотренном выше процессе не учтена собственная энергия протонов, которая на много порядков больше, чем энергия синтеза альфа-частиц. С другой стороны, устойчивость протонов существенным образом зависит от потери ими собственной энергии, которая теряется вследствие вязкости окружающего протоны эфира. И если время существования протонов составляет 10–20 млрд. лет, то это означает, что часть энергии, излучаемой в пространство, скрытая от наблюдателей, существенно превышает энергию электромагнитного излучения, фиксируемую наблюдателями.