Что такое память - pismo.netnado.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Название работы Кол-во страниц Размер
A. Baddeley Your Memory. A user’s Guide. Бэддели А. Ваша память. 4 614.31kb.
Психология памяти план: Понятие памяти в психологии. Виды памяти 1 172.38kb.
Что такое хорошо и что такое плохо. Новые Усы- 2007 Что делать если... 1 148.25kb.
В очередной раз о национализме и либерализме 1 282.63kb.
Очень часто можно слышать, как люди говорят: "Ему повезло, у него... 4 593.78kb.
[19: 31: 32] Dram s %[to Clan] аа и что ту с тенями 1 30.05kb.
Чтобы сделать главу относительно независимой от других работ, мне... 3 901.62kb.
Контрольные вопросы (основные сведения о компьютерах и программах) 3 374kb.
Федор Михайлович Достоевский Белые ночи 4 745.61kb.
Московская городская конференция школьников "Холокост: память и предупреждение" 1 10.14kb.
1. Кэш память первого и второго уровня. Организация работы кэш-памяти 1 112.84kb.
Практический тур IV открытая олимпиада по базовому курсу информатики 1 17.93kb.
Урок литературы «Война глазами детей» 1 78.68kb.
Что такое память - страница №1/1

Билет №19
1.Быстродействие ЗУ. Оценка временных характеристик: формула расчета времени обращения к ЗУ (Т обр).
2.Многомашинный комплекс. Организация межмашинных обменов информацией.
3.Прерывания. Аппаратные прерывания. Описание процесса прерывания в общем виде.
1) Что такое память

Систему называют запоминающим устройством (ЗУ), если она обладает способностью воспринимать и сохранять информацию, а затем при определённых условиях частично или полностью адекватно воспроизводить ее, обеспечивая достаточно длинный временной интервал между моментами прихода и использования информации. Простейшая модель, обладающая свойством памяти, состоит из запоминающих элементов (ячеек памяти), связанных с каналом ввода/вывода информации. Поскольку в вычислительной технике информация представлена в двоичном коде, то запоминающее устройство должно содержать набор элементов, которые могут находиться в двух устойчивых состояниях. Каждый такой элемент называется ячейкой памяти и имеет собственный уникальный адрес.



Основные характеристики ЗУ

Важнейшими характеристиками ЗУ являются информационная ёмкость и быстродействие.



Информационная ёмкость ЗУ определяется количеством единиц информации, которое может храниться в нём. Как правило, информационной емкостью называется только полезный объем хранимой информации, в нее не включается размер памяти, занятый служебной информацией, например резервные области, синхродорожки, инженерные цилиндры и пр.

Минимальной единицей информации является бит или же кратные ей единицы: килобит (1 кб=1024 бита), мегабит (1Мб=1024кб), гигабит (1Гб=1024Мб). Но чаще пользуются единицей байт (1Байт=8бит), или же кратными ей единицами: килобайт (1 кБ=1024 Байта), мегабайт (1МБ=1024КБ), гигабайт (1ГБ=1024МБ). Для измерения больших объемов памяти используются терабайты и петабайты. В сокращенных наименованиях единиц, дабы не спутать, например килобайты и килобиты, мы будем использовать следующее соглашение: если подразумевается бит, то используются строчные буквы (б, кб, Мб, Гб), соответственно байты будем обозначать прописными - Б, кБ, МБ, ГБ.

Быстродействие ЗУ характеризуется его временными характеристиками, к которым относятся:

Время обращения (время цикла) характеризуем максимальную частоту обращения к данному ЗУ при считывании или записи информации.


Время считывания (выборки) информации - интервал времени обращения к ЗУ от подачи сигнала считывания и до получения выходного сигнала.
Время записи информации - интервал времени от момента подачи сигнала обращения к ЗУ до момента готовности ЗУ к приему следующей порции информации.

Важными характеристиками ЗУ являются также надежность, масса устройства, габариты, потребляемая мощность и стоимость.



Классификация ЗУ

Запоминающие устройства можно классифицировать всевозможными способами, например по назначению, адресации, характеру хранения информации, физическим принципам работы, технологии изготовления и т.д.

По назначению ЗУ разделяют на кратковременные и долговременные.

ЗУ предназначенные для кратковременного хранения информации называются оперативным запоминающим устройством (ОЗУ или RAM). Как уже ясно из названия, они применяются для хранения часто меняющейся информации. При отключении питания информация, хранящаяся в таком ЗУ, теряется. Долговременные, или как их еще называют постоянные запоминающие устройства (ПЗУ или ROM), предназначены для длительного хранения информации. Информация записанная в таком ЗУ при отключении питания сохраняется достаточно длительное время и может быть по мере надобности использована. ПЗУ делятся на собственно ПЗУ и ППЗУ. В ПЗУ информация может быть записана один раз, а ППЗУ допускают многократную запись/стирание информации (Интересна возможность использования ППЗУ в качестве ОЗУ, до последнего времени тому было два серьезных препятствия: низкая скорость записи информации в ППЗУ (на порядки меньшая, чем в ОЗУ) и высокая стоимость устройств ППЗУ. С развитием технологий, себестоимость устройств ППЗУ постоянно снижается, а скорость работы возрастает. Возможно скоро мы увидим компьютеры, работающие на совсех других принципах, по крайней мере информация о новых видах памяти, призванных заменить собой все существующие, время от времени появляется. – Прим. автора). По большей части ПЗУ и ППЗУ используются для хранения внешних данных – отсюда еще их одно собирательное название - ВЗУ (внешние запоминающие устройства)

По методу адресации запоминающие устройства делятся в основном на устройства с последовательной и произвольной выборкой (доступом). Последовательная и произвольная адресация далеко не единственно возможные методы доступа к информации, например, можно упомянуть так называемые ЗУ с ассоциативной выборкой, но они достаточно экзотичны, поэтому мы на них останавливаться не будем.

В ЗУ с последовательным доступом для нахождения ячейки памяти с записанной информацией необходимо последовательно просмотреть все ячейки от начала массива памяти и до нужного нам адреса. Время доступа к произвольной ячейке памяти, таким образом, напрямую зависит от адреса ячейки.

Можно было бы предположить, что в ЗУ с произвольным доступом время обращения одинаково для всех ячеек, но это верно далеко не всегда. Если для ОЗУ время обращения к любой ячейке памяти практически одинаково, то в случае жесткого диска (HDD) время доступа к какому-либо сектору складывается из времени подвода считывающей головки к нужной дорожке (seek time), ожидания подхода нужного сектора и времени на саму операцию чтения или записи.

Кроме того, все ЗУ можно также разделить на ЗУ, где носитель информации объединен с устройством чтения/записи (например, жесткие диски) и на ЗУ со съемными носителями. Примером последних являются флоппи-диски.

И, наконец, по физическим принципам работы все ЗУ делятся на физические, магнитные, оптические, полупроводниковые устройства. Опять-таки, это не полный перечень типов памяти, но устройства, использующие другие принципы хранения информации пока еще (или уже) не получили "прописки" в массовой компьютерной технике.

Б) 2.1. Устройства хранения информации занимают значительное место в структуре современных цифровых вычислительных систем. Особую роль при этом играют полупроводниковые запоминающие устройства, предназначенные для построения внутренней памяти ЭВМ. К устройствам данного класса относятся оперативные запоминающие устройства ( ОЗУ ), постоянные запоминающие устройства ( ПЗУ ), программируемые постоянные запоминающие устройства ( ППЗУ ) и репрограммируемыв постоянные запоминающие устройства ( РПЗУ ).


2.2. Полупроводниковые ОЗУ обеспечивают запись, хранение и считывание информации, поступающей из центрального процессора или устройств внешней памяти ЭВМ. Они характеризуются высоким быстродействием, однако при отключении питания информация, записанная в 0ЗУ данного типа, стирается.
П3У предназначены для длительного хранения информации многократного использования ( константы, таблицы данных, стандартные программы и т.д. ). Запись информации в ПЗУ производится в процессе их изготовления. ПЗУ функционируют только в режиме считывания и сохраняет информацию при отключении питания.
В отличии от ПЗУ программируемые ПЗУ позволяют пользователю производить однократную запись ( программирование ) информации по каждому адресу. Основным режимом работы ППЗУ также является режим считывания информации.
Исследуемые в настоящей работе РПЗУ сохраняют информацию при отключении источников питания, а также допускают возможность ее многократной перезаписи электрическими сигналами непосредственно самим пользователем, что имеет принципиальное значение при отладке тех или иных систем. В отличие от ОЗУ быстродействие этих устройств в режиме записи информации значительно ниже, чем в режиме считывания информации. В связи с этим можно считать, что основным режимом работы РПЗУ является режим считывания информации.
2.3. Основными определяющими параметрами запоминающих устройств являются информационная емкость и быстродействие. В качестве единицы измерения информационной емкости используются бит, представляющий собой один ( любой ) разряд двоичного числа. Часто используются производные единицы:
байт ( 1 байт = 8 бит );
Кбайт ( 1 Кбайт = 210 байт );
Мбайт ( 1 Мбайт = 220 байт ) и др.
Информационная емкость записывается, как правило, в виде произведения
Синф = n x m, где
n - число двоичных слов;
m - разрядность слова.
Например, емкость ОЗУ типа К155РУ1 составляет
Синф = 16 х 1 бит = 16 бит.
Емкость ППЗУ типа К155РЕЗ равна
Синф = 32 х 8 бит = 256 бит = 32 байта.
Такая форма записи характеризует также и организацию памяти. Так, в приведенном примере ОЗУ типа К155РУ1 содержит 16 слов с разрядностью 1, а ППЗУ типа К155РЕЗ содержит 32 слова с разрядностьв 8.
Быстродействие запоминающего устройства характеризуется величиной времени обращения. Время обращения - это интервал времени от момента подачи сигнала записи или считывания информации до момента завершения операции, т.е. минимальный интервал времени между двумя последовательными сигналами обращения к запоминающему устройству. Это время может составлять от долей до единиц микросекунд в зависимости от типа устройства.
2.4. В качестве примера запоминающего устройства рассмотрим БИС РПЗУ типа КР1601РР1 информационной емкостью
Синф 1К х 4 = 4 Кбит (1К = 210 =1024 ).
Условно-графическое обозначение микросхемы приведено на рис.1.
Рис.1
На рис.1 использованы следующие обозначения:
A0 ( A9 - входы адреса
D0 ( D3 - входы / выходы данных
CS - выбор кристалла
RD - вход сигнала считывания
PR - вход сигнала программирования
ER - вход сигнала стирания
UPR -вход напряжения программирования
Режимы работы микросхемы представлены в таблице 1.
Таблица 1
CS
ER
PR
RD
A0(A9
UPR
D1/0
Режим
0
X
X
X
X
X
Roff
Хранение
1
0
1
0
X
-33(-31 B
X
Общее стирание
1
0
0
0
A
//
X
Избирательное стирание
1
1
0
0
A
//
D1
Запись данных
1
1
1
1
A
-33(5 B
D0
Считывание
2.4.1. В режиме хранения на вход С подается логический "0", при этом независимо от характера сигналов на других управляющих и адресных входах на выходах данных устанавливается высокоомное состояние ( Roff )
2) Многомашинный вычислительный комплекс (ММВК) – комплекс, включающий в себя две или более ЭВМ (каждая из которых имеет процессор, ОЗУ, набор периферийных устройств и работает под управлением собственной операционной системы), связи между которыми обеспечивают выполнение функций, возложенных на комплекс.

Цели, которые ставятся при объединении ЭВМ в комплекс, могут быть различными, и они определяют характер связей между ЭВМ. Чаще всего основной целью создания ММВК является или увеличение производительности, или повышение надежности, или одновременно и то и другое. Однако при достижении одних и тех же целей связи между ЭВМ могут существенно различаться.

По характеру связей между ЭВМ комплексы можно разделить на три типа: косвенно-, или слабосвязанные; прямосвязанные; сателлитные.

В косвенно-, или слабосвязанных, комплексах ЭВМ связаны друг с другом только через внешние запоминающие устройства (ВЗУ). Для обеспечения таких связей используются устройства управления ВЗУ с двумя и более входами. Структурная схема такого ММВК приведена на рис. 1.5. Заметим, что здесь и далее для простоты приводятся схемы для двухмашинных комплексов. При трех и более ЭВМ комплексы строятся аналогичным образом. В косвенно-связанных комплексах связь между ЭВМ осуществляется только на информационном уровне. Обмен информацией осуществляется в основном по принципу «почтового ящика», т. е. каждая из ЭВМ помещает в общую внешнюю память информацию, руководствуясь собственной программой, и соответственно другая ЭВМ принимает эту информацию, исходя из своих потребностей. Такая организация связей обычно используется в тех случаях, когда ставится задача повысить надежность комплекса путем резервирования ЭВМ. В этом случае ЭВМ, являющаяся основной, решает заданные задачи, выдает результаты и постоянно оставляет в общем ВЗУ всю информацию, необходимую для продолжения решения с любого момента времени. Вторая ЭВМ, являющаяся резервной, может находиться в состоянии ожидания, с тем чтобы в случае выхода из строя основной ЭВМ, по сигналу оператора начать выполнение функций, используя информацию, хранимую в общем ВЗУ основной ЭВМ.



Рис. 1.5. Связи между ЭВМ и ММВК

 

При такой связи может быть несколько способов организации работы комплекса.



1. Резервная ЭВМ находится в выключенном состоянии (ненагруженный резерв) и включается только при отказе основной ЭВМ. Естественно, для того чтобы резервная ЭВМ начала выдавать результаты вместо основной, потребуется определенное время, которое определяется временем, необходимым для включения ЭВМ, вхождением ее и режим, а также временем, отводимым для проверки ее исправности. Это время может быть достаточно большим. Такая организация возможна, когда система, в которой работает ЭВМ, не критична по отношению к некоторым перерывам или остановкам в процессе решения задач. Это обычно имеет место в случаях, когда ЭВМ не выдает управляющую информацию.

2. Резервная ЭВМ находится в состоянии полной готовности и в любой момент может заменить основную ЭВМ (нагруженный резерв), причем либо не решает никаких задач, либо работает в режиме самоконтроля, решая контрольные задачи. В этом случае переход в работе от основной к резервной ЭВМ может осуществляться достаточно быстро, практически без перерыва в выдаче результатов. Однако следует заметить, что основная ЭВМ обновляет в общем ВЗУ информацию, необходимую для продолжения решения, не непрерывно, а с определенной дискретностью, поэтому резервная ЭВМ начинает решать задачи, возвращаясь на некоторое время назад. Такая организация допустима и в тех случаях, когда ЭВМ работает непосредственно в контуре управления, а управляемым процесс достаточно медленным и возврат во времени не оказывает заметного влияния.

При организации работы по первому и второму вариантам ЭВМ используются нерационально: одна ЭВМ всегда простаивает. Простоев можно избежать, загружая ЭВМ решением каких-то вспомогательных задач, не имеющих отношения к основному процессу. Это повышает эффективность системы – производительность практически удваивается.

3. Для того чтобы полностью исключить перерыв в выдаче результатов, обе ЭВМ, и основная и резервная, решают одновременно одни и те же задачи, но результаты выдаст только основная ЭВМ, а в случае выхода се из строя результаты начинает вы давать резервная ЭВМ. При этом общее ВЗУ используется только для взаимного контроля. Иногда такой комплекс дополняется устройством для сравнения результатов с целью контроля. Если при этом используются три ЭВМ, то возможно применение метода голосования, когда окончательный результат выдается только при совпадении результатов решения задачи не менее чем от двух ЭВМ. Это повышает и надежность комплекса в целом, и достоверность выдаваемых результатов. Разумеется, в этом варианте высокая надежность и оперативность достигается весьма высокой ценой – увеличением стоимости системы.

Следует обратить внимание, что при любой организации работы и слабосвязанном ММВК переключение ЭВМ осуществляется либо по командам оператора, либо с помощью дополнительных средств, осуществляющих контроль исправности ЭВМ и вырабатывающих необходимые сигналы. Кроме того, быстрый переход к работе с основной на резервную ЭВМ возможен лишь при низкой эффективности использования оборудования.

Существенно большой гибкостью обладают прямосвязанные ММВК. В прямосвязанных комплексах существуют три вида связей (рис. 1.5): общее ОЗУ (ООЗУ); прямое управление, иначе связь процессор (П) – процессор; адаптер канал – канал (АКК).

Связь через общее ОЗУ гораздо сильнее связи через ВЗУ. Хотя первая связь также носит характер информационной связи и обмен информацией осуществляется по принципу «почтового ящика», однако, вследствие того, что процессоры имеют прямой доступ к ОЗУ, все процессы в системе могут протекать с существенно большей скоростью, а разрывы в выдаче результатов при переходах с основной ЭВМ на резервную сокращаются до минимума. Недостаток связи через общее ОЗУ заключается в том, что при выходе из строя ОЗУ, которое является сложным электронным устройством, нарушается работа всей системы. Чтобы этого избежать, приходится строить общее ОЗУ из нескольких модулей и резервировать информацию. Это, в свою очередь, приводит к усложнению организации вычислительного процесса в комплексе и в конечном счете к усложнению операционных систем. Следует отметить также и то, что связи через общее ОЗУ существенно дороже, чем через ВЗУ.

Непосредственная связь между процессорами – канал прямого управления – может быть не только информационной, но и командной, т. е. по каналу прямого управления один процессор может непосредственно управлять действиями другого процессора. Это, естественно, улучшает динамику перехода от основной ЭВМ к резервной, позволяет осуществлять более полный взаимный контроль ЭВМ. Вместе с тем передача сколько-нибудь значительных объемов информации по каналу прямого управления нецелесообразна, так как в этом случае решение задач прекращается: процессоры ведут обмен информацией.

Связь через адаптер канал – канал в значительной степени устраняет недостатки связи через общее ОЗУ и вместе с тем почти не уменьшает возможностей по обмену информацией между ЭВМ по сравнению с общим ОЗУ. Сущность этого способа связи заключается в том, что связываются между собой каналы двух ЭВМ с помощью специального устройства – адаптера. Обычно это устройство подключается к селекторным каналам ЭВМ. Такое подключение адаптера обеспечивает достаточно быстрый обмен информацией между ЭВМ, при этом обмен может производиться большими массивами информации. В отношении скорости передачи информации связь через АКК мало уступает связи через общее ОЗУ, а в отношении объема передаваемой информации – связи через общее ВЗУ. Функции АКК достаточно просты: это устройство должно обеспечивать взаимную синхронизацию работы двух ЭВМ и буферизацию информации при ее передаче. Хотя функции АКК и его структура (рис. 1.5) достаточно просты, однако большое разнообразие режимов работы двух ЭВМ и необходимость реализации этих режимов существенно усложняет это устройство.

Прямосвязанные комплексы позволяют осуществлять все способы организации ММВК, характерные для слабосвязанных комплексов. Однако за счет некоторого усложнения связей эффективность комплексов может быть значительно повышена. В частности, в прямосвязанных комплексах возможен быстрый переход от основной ЭВМ к резервной и в тех случаях, когда резервная ЭВМ загружена собственными задачами. Это позволяет обеспечивать высокую надежность при высокой производительности.

В реальных комплексах одновременно используется не один вид связи между ЭВМ, а два или более. В том числе очень часто в прямосвязанных комплексах присутствует и косвенная связь через ВЗУ.

Для комплексов с сателлитными ЭВМ характерным является не способ связи, а принципы взаимодействии ЭВМ. Структура связей в сателлитных комплексах не отличается от связей в обычных ММВК: чаще всего связь между ЭВМ осуществляется через АКК. Особенностью же этих комплексов является то, что в них, во-первых, ЭВМ существенно различаются по своим характеристикам, а во-вторых, имеет место определенная соподчиненность машин и различие функций, выполняемых каждой ЭВМ. Одна из ЭВМ, основная, является, как правило, высокопроизводительной и предназначается для основной обработки информации. Вторая, существенно меньшая по производительности, называется сателлитной или вспомогательной ЭВМ. Ее назначение – организация обмена информацией основной ЭВМ с периферийными устройствами, ВЗУ, удаленными абонентами, подключенными через аппаратуру передачи данных к основной ЭВМ. Кроме того, сателлитная ЭВМ может производить предварительную сортировку информации, преобразование ее вформу, удобную для обработки на основной ЭВМ, приведение выходной информации к виду, удобному для пользователя, и др. Сателлитная ЭВМ, таким образом, избавляет основнуювысокопроизводительную ЭВМ от выполнения многочисленных действий, которые не требуют ни большой разрядности, ни сложных операций, т. е. операций, для которых большая, мощная ЭВМ не нужна. Более того, с учетом характера выполняемых сателлитной машиной операций она может быть ориентирована на выполнение именно такого класса операций и обеспечивать даже большую производительность, чем основная ЭВМ.

Некоторые комплексы включают в себя не одну, а несколько сателлитных ЭВМ, при этом каждая из них ориентируется на выполнение определенных функций: например, одна осуществляет связь основной ЭВМ с устройствами ввода–вывода информации, другая – связь с удаленными абонентами, третья организует файловую систему и т. д.

Появление в последнее время дешевых и простых микро-ЭВМ в немалой степени способствует развитию сателлитных комплексов. Сателлитные комплексы решают только одну задачу: увеличивают производительность комплекса, не оказывая заметного влияния на показатели надежности.

Подключение сателлитных ЭВМ принципиально возможно не только через АКК, но и другими способами, однако связь через АКК наиболее удобна.

3) Прерывание (англ. interrupt) — сигнал, сообщающий процессору о совершении какого-либо асинхронного события. При этом выполнение текущей последовательности команд приостанавливается, и управление передаётся обработчику прерывания, который выполняет работу по обработке события и возвращает управление в прерванный код.



Виды прерываний:

- Аппаратные (англ. IRQ — Interrupt Request) — события от периферийных устройств (например, нажатия клавиш клавиатуры, движение мыши, сигнал от таймера, сетевой карты или дискового накопителя) — внешние прерывания, или события в микропроцессоре — (например, деление на ноль) — внутренние прерывания;



-Программные — инициируются выполняемой программой, то есть уже синхронно, а не асинхронно. Программные прерывания могут служить для вызова сервисов операционной системы.

Обработчики прерываний обычно пишутся таким образом, чтобы время их обработки было как можно меньшим.

До окончания обработки прерывания обычно устанавливается запрет на обработку или даже генерацию других прерываний. Некоторые процессоры поддерживают иерархию прерываний, позволяющую прерываниям более высокого приоритета вызываться при обработке менее важных прерываний.

Вектор прерывания — ячейка памяти, содержащая адрес обработчика прерывания.

Перехват прерывания — изменение обработчика прерывания на свой собственный.



Вектора прерываний объединяются в таблицу векторов прерываний. Местоположение таблицы зависит от типа и режима работы микропроцессора.